check for bst

C++
// Java implementation to check if given Binary tree 
// is a BST or not 
  
/* Class containing left and right child of current 
 node and key value*/
class Node 
{ 
    int data; 
    Node left, right; 
  
    public Node(int item) 
    { 
        data = item; 
        left = right = null; 
    } 
} 
  
public class BinaryTree 
{ 
    // Root of the Binary Tree 
    Node root; 
  
    // To keep tract of previous node in Inorder Traversal 
    Node prev; 
  
    boolean isBST()  { 
        prev = null; 
        return isBST(root); 
    } 
  
    /* Returns true if given search tree is binary 
       search tree (efficient version) */
    boolean isBST(Node node) 
    { 
        // traverse the tree in inorder fashion and 
        // keep a track of previous node 
        if (node != null) 
        { 
            if (!isBST(node.left)) 
                return false; 
  
            // allows only distinct values node 
            if (prev != null && node.data <= prev.data ) 
                return false; 
            prev = node; 
            return isBST(node.right); 
        } 
        return true; 
    } 
  
    /* Driver program to test above functions */
    public static void main(String args[]) 
    { 
        BinaryTree tree = new BinaryTree(); 
        tree.root = new Node(4); 
        tree.root.left = new Node(2); 
        tree.root.right = new Node(5); 
        tree.root.left.left = new Node(1); 
        tree.root.left.right = new Node(3); 
  
        if (tree.isBST()) 
            System.out.println("IS BST"); 
        else
            System.out.println("Not a BST"); 
    } 
} 
// C++ program to check if a given tree is BST. 
#include <bits/stdc++.h> 
using namespace std; 

/* A binary tree node has data, pointer to 
left child and a pointer to right child */
struct Node 
{ 
	int data; 
	struct Node* left, *right; 
}; 

// Returns true if given tree is BST. 
bool isBST(Node* root, Node* l=NULL, Node* r=NULL) 
{ 
	// Base condition 
	if (root == NULL) 
		return true; 

	// if left node exist then check it has 
	// correct data or not i.e. left node's data 
	// should be less than root's data 
	if (l != NULL and root->data <= l->data) 
		return false; 

	// if right node exist then check it has 
	// correct data or not i.e. right node's data 
	// should be greater than root's data 
	if (r != NULL and root->data >= r->data) 
		return false; 

	// check recursively for every node. 
	return isBST(root->left, l, root) and 
		isBST(root->right, root, r); 
} 

/* Helper function that allocates a new node with the 
given data and NULL left and right pointers. */
struct Node* newNode(int data) 
{ 
	struct Node* node = new Node; 
	node->data = data; 
	node->left = node->right = NULL; 
	return (node); 
} 

/* Driver program to test above functions*/
int main() 
{ 
	struct Node *root = newNode(3); 
	root->left	 = newNode(2); 
	root->right	 = newNode(5); 
	root->left->left = newNode(1); 
	root->left->right = newNode(4); 

	if (isBST(root,NULL,NULL)) 
		cout << "Is BST"; 
	else
		cout << "Not a BST"; 

	return 0; 
} 

Source

Also in C++: